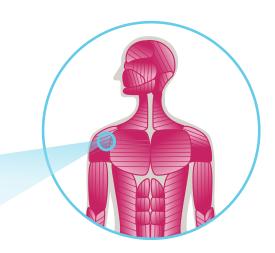
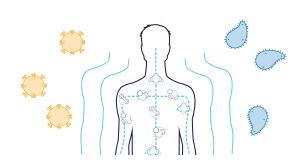

Generalised Myasthenia Gravis (gMG)

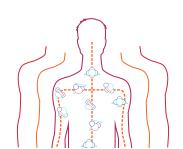


WHAT IS GENERALISED **MYASTHENIA GRAVIS?**

Generalised myasthenia gravis (gMG) is a rare autoimmune disorder characterised by loss of muscle function and severe muscle weakness.1



The **neuromuscular junction (NMJ)** is the connection point between nerve cells and the muscles they control.2


85% of people with gMG are AChR+,

meaning they produce specific antibodies (anti-AChR) that bind to signal receptors at the NMJ. This binding activates the <u>complement</u> system, causing the immune system to attack the NMJ. This leads to inflammation and a breakdown in communication between the brain and the muscles.²⁻⁴

THE COMPLEMENT SYSTEM

The complement system is a part of the immune system and is essential to the body's defence against infection.5

When the system is thrown out of balance, or dysregulated, these proteins can trigger a dangerous, uncontrolled cascade of reactions that attack cells and tissues resulting in harmful inflammation and the destruction of healthy cells.5

Diagnosed prevalence of gMG in adults

~113K⁶

~93K⁶

~89K⁶

Most commonly begins for women before the age of 40 and for men after the age of 60.7

Initial symptoms may include^{8,9}

which can often lead to more severe symptoms as the disease progresses

HOW IS gMG DIAGNOSED?9-11

gMG is typically diagnosed with a physical examination to evaluate muscle function.

Blood tests for certain antibodies, including anti-acetylcholine receptor (anti-AChR), are also used

as well as nerve and muscle stimulation and chest computed tomography or magnetic resonance imaging (MRI).

Content created by Alexion, AstraZeneca Rare Disease

References:

- Jung-Plath W, et al. Assessment of myasthenia gravis patients' quality of life. The Journal of Neurological and Neurosurgical Nursing. 2023;12(2):74-83. Omar A, et al. Physiology, neuromuscular junction. StatPearls. 2023.
- Lazaridis K, et al. Myasthenia gravis: autoantibody specificities and their role in MG management. Front Neurol. 2020;11:596981. Huang YF, et al. Visualization and characterization of complement activation in acetylcholine receptor antibody seropositive myasthenia gravis.
- Muscle Nerve. 2024.
- 6. AstraZeneca Data on File Epidemiology estimates are composed of a triangulation of different data sources including Data Monitor, Decision
- Cedzyński M, et al. Editorial: the role of complement in health and disease. Front. Immunol. 2019;10:1869.
- Resources Group, Kantar Health, and internal input (updated as of May 2024). Cavanagh N, et al. Exploring the impairments and allied health professional utilization in people with myasthenia gravis: a cross-sectional study.
- J Clin Neurosci. 2023;114:9-16.
- 8. Catalin J, et al. Clinical presentation of myasthenia gravis. Thymus. 2019. 9. Farid ZR, et al. Factors affecting generalization of ocular myasthenia gravis. Sriwijaya Journal of Ophthalmology. 2020;3(2):48-54.
- 10. Rousseff RT, et al. Diagnosis of Myasthenia Gravis. J Clin Med. 2021;10(8):1736. Kisabay A, et al. Risk for generalization in ocular onset myasthenia gravis: experience from a neuro-ophthalmology clinic. Acta Neurol Belg. 2022;122(2):337-344.